


The data in the table above, in the first three rows, showing the Influent Concentration, mg/L of BOD, COD, and TOC, comes from the following excellent wastewater reference source: Henze, Mogens, Poul Harremoes, Jes la Cour Jansen, and Eric Arvin. "Wastewater Treatment, Biological and Chemical Processes." Third Edition. Berlin: Springer-Verlag, 2002. Specifically, the data is from Table 1.7. Typical average contents of organic matter in domestic wastewater which can be found on page 28. For the bottom three rows I simply added the calculations because I'm always interested in these ratios. COD/BOD ratios can be highly variable. The more variable the ratio values, as in, the higher the COD/BOD ratio, the greater the percentage of slowly biodegradable and non-biodegradable material in the sample. And that means the BOD5 test will give a lower value than is truly representative of the oxygen demand in the sample.
The COD test is often used in conjunction with the BOD test to estimate the amount of nonbiodegradable organic material in a wastewater. In the case of biodegradable organics, the COD is normally in the range of 1.3 to 1.5 times the BOD. When the result of a COD test is more than twice that of the BOD test, there is good reason to suspect that a significant portion of the organic material in the sample is not biodegradable by ordinary microorganisms. Source: Woodard, F. (2001). Industrial Waste Treatment Handbook. Boston, MA: Butterworth Heinemann. The graph below shows the variability in three years of influent COD and BOD from a refinery in North America. The histogram has been fit with a distribution using the Monte Carlo simulation program @Risk. The fitted distribution is a gamma distribution which has two parameters: 1) a shape parameter, alpha and 2) a scale parameter, beta. The fitted distribution tells us that 92.2% of the COD/BOD ratio values are between 2.51 and 6.36. As you can see, these actual COD/BOD ratio values are significantly higher than the typical 2.1 value from the table above.


